

 https://biblioteca.sistedes.es/biblioteca/conferencias/jisbd/jisbd-2017-la-
laguna/

 Inicio
 Noticias

 Acerca de la Biblioteca
 Conferencias

 Jornadas de Ingeniería del Software y Bases de Datos (JISBD)

 JISBD 2017 (La Laguna)

JISBD 2017 (La Laguna)

Ruiz, F. (Ed.), Actas de las XXII Jornadas de Ingeniería del Software y Bases de
Datos (JISBD 2017). La Laguna (Tenerife), septiembre de 2017.

Las XX Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2015) se
han celebrado en La Laguna del 19 al 21 de julio de 2017, como parte de las
Jornadas SISTEDES.
El programa de JISBD 2017 se ha organizado en torno a sesiones temáticas o
tracks. A continuación se detalla el contenido de las actas:

 Preliminares
 Comités
 Conferencia invitada: Dr. Don Gotterbarn
 Tutoriales
 Salón de la Fama
 Track ASV – Arquitecturas Software y Variabilidad
 Track GD – Gestión de Datos
 Track ISDM – Ingeniería del Software Dirigida por Modelos
 Track ISGB – Ingeniería del Software Guiada por Búsqueda
 Track IWSP – Ingeniería Web y Sistemas Pervasivos
 Track MEISSI – Métodos Empíricos en Ingeniería del Software y Sistemas de

Información
 Track PSM – Proceso Software y Metodologías

 Track RCP – Requisitos, Calidad y Pruebas

Framework for modelling and implementing
secure NoSQL document databases

Carlos Blanco 1,2, Jesus Peral 3, Juan Trujillo 3, and Eduardo
Fernández-Medina 1

1GSyA research group. Institute of Information Technologies and Systems.
Information Systems and Technologies Department.

University of Castilla-La Mancha. Spain.
Eduardo.Fdezmedina@uclm.es

2ISTR research group. Dep. of Computer Science and Electronics.
University of Cantabria. Spain.
Carlos.Blanco@unican.es

3LUCENTIA research group. Languages and Computing Systems Department.
University of Alicante. Spain.

jperal@dlsi.ua.esjtrujillo@dlsi.ua.es

Abstract. The great amount of data managed by Big Data technolo-
gies have to be correctly assured in order to protect critical enterprise
and personal information. Nevertheless, current security solutions for Big
Data technologies such as NoSQL databases do not take into account the
special characteristics of these technologies.

In this paper, we focus on assuring NoSQL document databases propos-
ing a framework composed of three stages: (1) the source data set is anal-
ysed by using Natural Language Processing techniques and ontological
resources in order to detect sensitive data. (2) we define a metamodel for
document NoSQL databases that allows designer to specify both struc-
tural and security aspects. (3) this model is implemented into a specific
document database tool, MongoDB. Finally, we apply the framework
proposed to a case study with a data set of medical domain.

Keywords: Big Data, NoSQL, model, security, Natural Language Pro-
cessing

1 Introduction

Nowadays, the exchange of a great volume of data is a usual activity in several
domains (scientific, medical, citizens, etc.). These data include critical enterprise
information and personal data which could be exposed if they are not correctly
assured [7]. Nevertheless, we do not have (or we do not know how to correctly
apply) security policies to assure (confidentiality, privacy, integrity, etc.) in Big
Data domains [9, 6]. Furthermore, the democratization of Big Data is increasing
generating more security and privacy problems that need new strategies and
solutions [10].

2 C.Blanco, J.Peral, J.Trujillo, E.Fernández-Medina

Within this Big Data ecosystem new technologies have arised such as doc-
ument, columnar and graph NoSQL databases. Nevertheless, current Big Data
technologies and tools are not designed for managing the variety, velocity and
complexity of these massive data sets incorporating adequate security and pri-
vacy constraints [5, 9].

The main objective of our research deals with incorporating security in Big
Data technologies, focusing in this work on a certain technology, document
NoSQL databases. We consider that to obtain a robust secure solution secu-
rity constraints should be included at early development stages in order to be
considered in design decisions. Then, they could be correctly incorporated into
the final implementation.

In this way, this work presents a framework for modelling and implement-
ing document NoSQL databases considering security issues and also apply our
proposal to a case study.

The framework proposed consists on three stages: (1) The analysis of the
source data set to detect sensitive data by applying Natural Language Pro-
cessing (NLP) and ontological techniques; (2) The definition of a metamodel
for document NoSQL databases which includes both structural and security as-
pects; (3) The implementation in an specific document database tool, MongoDB,
considering security constraints.

The paper is organized as follows. In section 2 the related work about data
integration and security are shown. Following this, the framework proposed for
modelling secure document databases including data set analysis, modelling and
implementation is defined. In section 4 our framework is applied to a case study
of medical domain. Finally, conclusions and future work are presented.

2 Related work

Regarding to security, some works to incorporate security in Big Data have
been proposed, mainly in Hadoop ecosystem [8]. Nevertheless, these proposals
does not correctly fit with the special characteristics of Big Data technologies
(document, columnar, graph NoSQL databases) and do not consider security at
the modeling stages [6, 5, 10].

There are relevant contributions concerning a complete secure development
of information systems. Although they do not focus specifically on Big Data and
their specific security problems, they present interesting ideas, such as proposals
to include security constraints from the earliest development stages, to extend
UML with security aspects, to use the model-driven approach, etc. Some of the
most relevant proposals are described below. TROPOS is a methodology for soft-
ware development based on the intentional goals of agents that provides an exten-
sion called Secure TROPOS [2]. Mokum [11], which is an active object-oriented
knowledge-based system for modelling, permits the specification of security and
integrity constraints, along with automatic code generation. UMLsec [4] defines
and evaluates security specifications using formal semantics (labels, stereotypes,
etc.). It focuses mainly on accessing control policies and in the specification

Framework for secure NoSQL document databases 3

of confidentiality and integrity requirements. Model-driven Security (MDS) [1]
applies the model-driven approach to include security properties in high-level
system models and to automatically generate secure system architectures.

3 Framework proposed

This section describes the framework proposed in this paper. As Figure 1 shows,
this framework is composed of three stages. First, we carry out an analysis of the
data set in order to automatically detect and tag sensitive data by applying NLP
and ontological techniques. Then, designer use that information as recommenda-
tions to model the structural and security aspects of the database. In this stage,
designer decides which NoSQL database technology to use (document, columnar
or graph) and uses the metamodel proposed. Finally, that model is implemented
into a specific tool according to the mappings defined in our methodology.

In this paper we have defined the path marked in Figure 1 (data set analysis,
modelling for document NoSQL database technology and implementation into
MongoDB). The remainder parts of the figure shows how we plan to expand our
architecture.

Document databasesSecurity tagging by
NLP, ontologies, etc.

Columnar databases

Graph databases

MongoDB

CouchDB

Cassandra

Neo4J

Dataset analysis Modelling Implementation

Fig. 1. Framework proposed.

3.1 Data-Set analysis

Firstly, starting from a data set (for instance in a CSV format), each field is
analysed searching for sensitive information.

One of the contributions of this proposal is the establishment of the security
privileges needed to access each field of the data set. It is carried out by using
NLP and lexical and ontological resources. In our framework we have used the
lexical resource WordNet 3.11. By analysing the values of each field we establish
two kinds of security constraints.

1 http://wordnetweb.princeton.edu/perl/webwn (visited on February, 2017).

4 C.Blanco, J.Peral, J.Trujillo, E.Fernández-Medina

1. Security constraints. There are fields in which all the information is sensible
at the same security level, that is, it does not depend of their specific values.
For instance, an address field is sensible and a certain security level (for
instance, SL=2) could be required for queries. But this level is the same for
all the address, there are not address more sensible than others.

2. Fine-grain security constraints. Nevertheless, there are special cases in which
are needed to define fine-grain security constraints to establish higher secu-
rity privileges for certain values of the field. For instance, to query a field
representing diseases could require an specific security level in general (for
instance, SL=2), but for certain values that represent terminal diseases could
require a higher security level (for instance, SL=3). In this way, an user with
security level of 2 solely could see diseases not related with terminal diseases.

All the information obtained in this stage will be used in the next stage as
recommendations for the designer to model the data set.

3.2 Modelling

In this step, designer models the data set according to a metamodel. In this
paper we have defined a metamodel focused on a kind of NoSQL databases,
document databases (Figure 2).

<<stereotype>>
Database

name: String

actions: ActionTypes [1..*]

<<stereotype>>
SecurityConstraint

name: String

<<stereotype>>
Collection

name: String
sLevel: SLevel [0..1]
sRoles: SRole [*]
sCompartments: SCompartment [*]

<<stereotype>>
SecurityProfile

name: String

<<stereotype>>
SCompartment

name: String

<<stereotype>>
SRole

name: String

<<stereotype>>
SLevel

infLevel supLevel

root

child
*

collections

objectId
int
bool
string
array
…

<<enum>>
BSONTypes

0..1

0..10..1

*

name: String
required: bool

<<stereotype>>
Field

+datatype: BSONTypes

<<stereotype>>
Simple Field

<<stereotype>>
Composed

Field

name: String

<<stereotype>>
User

insert
find
update
remove

<<enum>>
ActionTypes

*

1

*

*

fields

1..* 1..*

fields

securityConstraints

collections 1..*

sRoles
*

sComp
*

sLevels
*

securityProfile

users

1..*

securityConstraints

securityProfiles

Package Class

ownedMember
*

Property

Constraint

Primitive
Type

Primitive
Type

1 id

* ref

field: Field
condition: String

<<stereotype>>
FGSecurityConstraint

Fig. 2. Metamodel for secure document databases.

Framework for secure NoSQL document databases 5

This metamodel extends UML class diagram for allowing the specification of
both structural and security aspects related with document databases. It permits
to model structural aspects such as Databases (as Packages), Collections (as
Classes) and Fields (as Properties): that can be simple fields (with a BSON
data type) or fields composed of several simple or composed fields.

The security configuration of the system which we want to model is defined
by using three points of view: a hierarchical structure of Security Roles (SRole);
a list of Security Levels (SLevel) with the clearance levels of the users; and a
set of horizontal Security Compartments or groups (SCompartment). Once this
configuration has been established, sets of certain security configurations com-
posed of roles, levels and compartments can be defined as instances of security
profiles (SecurityProfile) that after that, are associated to system Users.

Once security configuration has been established, we can define security rules
(SecurityConstraint) associated with structural elements. Each rule indicates the
actions (insert, find, update and remove) that certain subjects (SecurityProfile)
can carry out over certain objects (Collections). Furthermore, we can define fine
grain security rules (FGSecurityConstraint) which affect to specific fields of a
collection. This kind of rules allow us to establish different security privileges
(SecurityProfile) when the values of a field satisfy a condition.

3.3 Implementation

The last stage is the implementation of the modelled database into a specific
document database management tool (such as MongoDB, CouchDB, etc.). Our
model represents all the concepts needed for its implementation in different tools,
but we have to define how to map the model of each destination tool. Once we
have defined these mappings, this process can be integrated in a Model Driven
Engineering approach and automated by defining a set of model-to-text trans-
formations for each destination tool.

In this paper, MongoDB has been considered as the destination tool and
the mapping necessary to obtain a secure implementation from model has been
defined. This mapping is composed of three stages and will be further detailed
in case study (Section 4):

1. Database structure. First, we generate scripts to create de collections and
fields defined, considering their datatypes and structural constraints such as
mandatory fields. In MongoDB we use the commands ”createCollection” and
”validator” for datatypes and constraints.

2. Security configuration. The majority of database tools uses a Role Based
Access Control (RBAC) policy. Since our model is richer and includes roles,
levels and compartments, we have to implement that information by using
role hierarchies. The security constraints defined in the model are imple-
mented attached to the roles definition as privileges over certain objects
(collections). It is implemented in MongoDB by defining ”role” with ”privi-
leges” over ”resources” and ”actions”.

6 C.Blanco, J.Peral, J.Trujillo, E.Fernández-Medina

3. Fine-grain security constraints. This kind of constraints have to analyse
the values returned by a query in order to hide the most sensible ones. These
constraints used to be implemented by adding middleware to control user
queries. MongoDB uses a trusted middleware that processes the aggregation
pipeline with query result and allows us to define aggregation rules that
checks conditions and users privileges in order to hide sensitive information.
We use “redact” predicates showing (descend) or hiding (prune) information
according to the evaluation of a condition.

4 Case study

4.1 Description

The data set used in this experimentation is a synopsis that represents the
clinical care at 130 hospitals between the years 1999 and 2008. This data set is
available in the UCI Machine Learning Repository [3].

4.2 Data Set analysis

At this stage we will work with the data set previously defined in CSV format.
This phase of analysis is reusable, regardless of the technology (for instance,
document, columnar or graph databases) used in the following phases.

In our example, considering our data model, we analyse the different fields
in order to establish the security constraints and fine-grain constraints defined
in section 3.1.

Following we present an example of each type of security constraint. We as-
sume that we analyse the field treatment. In advance, we ignore what is the kind
of information stored, but we know the values. After consulting on WordNet, each
of the terms of the field is determined that refers to the concept “medicament”
(each particular word is searched, its hyperonyms and hyponyms). Previously
the security levels of the key concepts of information which are to be handled
have been defined within the ontology. In our example, “medicament” is assigned
with a level 2 of security. Therefore, we define a security constraint for the treat-
ment field by setting a security level 2. In Figure 3 a fragment of the ontologies
extracted from the fields treatment and medical specialty is shown.

It is noteworthy that the NLP techniques are suitable to be applied on text
fields. After undertaking a lexical-morphological analysis of the text (POS tag-
ging) and a partial syntactic analysis (partial parsing) the main concepts of
the text are detected. In addition, these techniques can solve own problems of
language, such as ellipses, anaphoric references, ambiguities, etc. present in the
text. On these key concepts extracted, the process defined above is carried out
by assigning a security level to a text field.

In order to show the fine-grain constraints, we analyse the field medical specialty.
This field identifies a specialty of the admitting physician corresponding to 84
distinct values, for example , “cardiology”, “pediatrics”, “neurology”, “oncol-
ogy”, etc. These values are searched in WordNet and it is determined that they

Framework for secure NoSQL document databases 7

Fig. 3. A fragment of treatment and specialty ontologies.

are concepts related to “medical specialty”, which is sensitive information. In
our example, “medical specialty” is assigned with a level of security of 2. When
analysing the data, we can appreciate that some values belong to the specialty of
“oncology” which is more sensitive (level 3). Therefore it is marked to be taken
into account and creating a new rule of this type into the model (Figure 3).

The final result of the analysis, after applying the constraints set, is as follows:

Patient fields. Race: Level 3; Address: Level 2; Remaining fields: Level 1.

Admission related fields. Admission type and treatment: Level 2; Medical
specialty: Level 2 (and if it is oncology: Level 3); Diagnosis: Level 2; Remaining
fields: Level 1.

4.3 Modelling

Figure 4 shows the model designed for our case study. It has been modelled
according to the metamodel defined in this paper (Figure 2).

Fields from the original data set have been grouped by two documents rep-
resented as two collections: Patient collection, for patient id, name, race, etc.
and Admission collection, for information related with encounters, diagnosis and
treatments. In this example we have used the two kinds of references between
documents: (1) a normalized reference between the patient id in Patient and
Admission collections; and (2) a denormalized reference with embedded data of
treatment (pairs of medicaments and doses) in Admission collection.

We consider a security configuration composed of roles for administration
and health (SRole Admin and Health). We grant access to Patient collection for
Admin role and access to Admission collection for Health role.

8 C.Blanco, J.Peral, J.Trujillo, E.Fernández-Medina

id: objectId {required=true}
name: string
race: string
gender: string
age: int
address: string

<<Collection>>
Patient

medication: string
dose: int

<<ComposedField>>
treatment

encounter_id: objectId {required=true}
patient_number: objectId
 {required=true; ref=Patient.id}
date: date
type: int
source: int
time_in_hospital: int
medical_specialty: string
diagnosis: array

<<Collection>>
Admission

actions: {insert, find, update, remove}

<<SecurityConstraint>>
Patient Collection Constraint

actions: {insert, find, update}

<<SecurityConstraint>>
Admission Collection Constraint

sLevel: 3
sRoles: Admin
sCompartments: null

<<SecurityProfile>>
Admin SLevel

sLevel: 2
sRoles: Health
sCompartments: null

<<SecurityProfile>>
Health SLevel2

actions: {insert, find, update}
field: medical_specialty
condition: “Oncology”

<<FGSecurityConstraint>>
MedicalSpecialty Constraint

sLevel: 3
sRoles: Health
sCompartments: null

<<SecurityProfile>>
Health SLevel3

<<SRole>>
Health

sRoles: {Admin, Health}
sLevels: {1, 2, 3}
sCompartments: null

<<Database>>
Hospital

<<SRole>>
Admin

<<SLevel>>
1

<<SLevel>>
2

<<SLevel>>
3

fields

securityConstraints

collections

collections collections

securityConstraints

collections

securityConstraints

collections

securityConstraints

securityProfiles

securityConstraints

securityProfiles

securityConstraints

securityProfiles

infLevel infLevel

supLevel supLevel

Fig. 4. Case study: model.

For establishing security constraints we take into account the security recom-
mendations obtained in the previous analysis. Then, we also define three security
levels: 1, 2 and 3, being level 3 the most restrictive.

In this point, each field of the data set has been tagged with a security level.
We analyse these tags to define the security level of the collection as the higher
value of their fields. Then, we define a security constraint associated to the col-
lection and the corresponding security profile. For instance, fields of Admission
collection require a security level of 1 unless type, diagnosis, medical specialty
and treatment (level 2). Then, we establish the security level of the Patient
collection as the most restrictive one (level 2). This is represented as a Secu-
rityConstraint (named “Admission Collection Constraint”) attached to Patient
collection and to a Security Profile (named “Health SLevel2”) that indicates the
security level of 2 and the security role Health. This rule indicates in its actions
property that the actions granted are insert, find and update.

Additionally, we can define fine-grain security constraints to increase the
security privileges needed to access certain values of a field. For instance, the field
“medical specialty” of Admission collection was tagged as level 2. Nevertheless,
some values of this field are related with “oncology” and require a higher security
level (level 3). This rule has been modelled as an additional security constraint

Framework for secure NoSQL document databases 9

(named “MedicalSpecialty Constraint”) attached with the collection Admission
and with a security profile (named “Health SLevel3”) that indicates a Health
role and a security level of 3. This rule includes a property “condition” in which
is indicated that this rule is applied if medical specialty is “oncology”.

4.4 Implementation

This section shows how the system previously modelled could be implemented
into an specific document database management tool, MongoDB. In Figure 5
the DB structure, the documents, the security configuration, and the fine-grain
security configuration can be seen.

Fig. 5. Case study: implementation.

Database structure. The structural part of the database is implemented
by defining collections and their fields, indicating datatypes and restrictions.
Documents of our collections Patient and Admission are shown in Figure 5.

Security configuration. Since MongoDB use a role based access control
(RBAC) mechanism, the security configuration (roles, levels and compartments)
has to be established by defining roles and their attached security privileges
(actions granted over certain objects). The figure shows and example for the
roles “Admin” and “3” (that represent the security level 3). They are granted
to do certain actions over the collection Patient.

Fine-grain security constraint can be implemented in MongoDB by us-
ing the aggregation pipeline and “redact” predicates. These results answer user

10 C.Blanco, J.Peral, J.Trujillo, E.Fernández-Medina

queries passing through trusted middleware. This predicates allows showing (de-
scend) or hiding (prune) information according to the evaluation of a condition.
An example in which oncological medical specialties are shown to roles “Health”
and security level of 3.

5 Conclusions

The large amount of data handled by Big Data technologies can expose sensitive
enterprise or personal information if it is not correctly assured (for unauthorized
accesses, data aggregation, etc.). Current Big Data technologies, such as NoSQL
document, columnar or graph databases, do not allow to adequately incorporate
security constraints.

In this paper, we have presented a framework for modelling and implementing
secure NoSQL document databases. The framework is composed of three stages:
(1) analysis of the data set in order to automatically detect and tag sensible data
by applying NLP and ontological techniques. (2) Modelling the structural and
security aspects of the database; in this stage, the NoSQL database technology
to use (document, columnar or graph) is defined and the metamodel proposed in
our framework for document databases is used. (3) Implementation of the model
into a specific tool according to the mappings defined in our framework. Here,
we have considered MongoDB implementation.

Finally, a case study is presented with a data set of medical domain in which
the analysis of the data is displayed to establish different levels of security, mod-
eling and its concrete implementation in MongoDB.

As future work, we want to automate our process for document databases by
(1) implementing the mappings from model to implementation with model-to-
text (M2T) transformations and (2) extracting database model from the data set
to use it as base model, that will be modified by the designer in order to include
security rules. Furthermore, we plan to extend our framework to columnar and
graph NoSQL database technologies.

References

1. D. Basin, J. Doser, and T. Lodderstedt. Model driven security: from uml models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology, 15(1):39–91, 2006.

2. L Compagna, P.E Khoury, A Krausová, F Massacci, and N Zannone. How to
integrate legal requirements into a requirements engineering methodology for the
development of security and privacy patterns. Artif. Intell. Law, 17(1):1–30, 2009.

3. Andrew Frank and Arthur Asuncion. Uci machine learning repository
[http://archive. ics. uci. edu/ml]. irvine, ca: University of california. School of
Information and Computer Science, 213, 2010.

4. J Jurjens and H Schmidt. Umlsec4uml2 - adopting umlsec to support uml2. Tech-
nical report, Technical Reports in Computer Science. Technische Universitat Dort-
mund, http://hdl.handle.net/2003/27602, 2011.

Framework for secure NoSQL document databases 11

5. Nir Kshetri. Big data’s impact on privacy, security and consumer welfare. Telecom-
munications Policy, 38(11):1134–1145, 2014.

6. Katina Michael and Keith Miller. Big data: New opportunities and new challenges
[guest editors’ introduction]. Computer, 46(6):22–24, 2013.

7. RENCI/NCDS. Security and privacy in the era of big data. Report, 2014.
8. B Saraladevi, N Pazhaniraja, P Victer Paul, MS Saleem Basha, and P Dhavachel-

van. Big data and hadoop-a study in security perspective. Procedia Computer
Science, 50:596–601, 2015.

9. Bhavani Thuraisingham. Big data security and privacy, 2015.
10. Raghav Toshniwal, Kanishka Ghosh Dastidar, and Asoke Nath. Big data security

issues and challenges. International Journal of Innovative Research in Advanced
Engineering (IJIRAE), 2(2):15–20, 2015.

11. R.P. van de Riet. Twenty-five years of mokum: For 25 years of data and knowledge
engineering: Correctness by design in relation to mde and correct protocols in
cyberspace. Data & Knowledge Engineering, 67(2):293–329, 2008.

